Will you ever be able to charge your mobile device, car and even clothing with flexible solar cells?

Researchers are looking at the challenges of mass producing and commercializing the now-experimental technology


Researchers at Aalto University in Finland and Université de Montréal are studying whether the now-experimental technology could someday be mass-produced and commercialized, and some of the issues that have to be resolved, including the environmental impact.

For the electronic cells to be viable on an industrial scale, they would have to be made through roll-to-roll processing — that is, be churned out on rolls of flexible plastic or metal foil, the researchers say. Ink-jet printing would allow precise insertion of the dye and electrolyte components.

The problem of encapsulation

The encapsulation of a flexible cell also poses a major challenge. If encapsulation is insufficient, liquid electrolyte could leak out of the cell or impurities could seep in, considerably reducing the lifetime of the device.

‘Flexible solar cells are usually made on metals or plastics, and both come with perils: a metal may corrode, and plastics may allow water and other impurities to permeate,” said Dr. Kati Miettunen, a project manager at Aalto’s Department of Bioproducts and Biosystems.

New innovations will also be needed to join the substrates together since conventional techniques such as glass-frit bonding now used in flat-panel displays and other devices are unsuitable for flexible cells.

The lifetime of devices as an issue

“Another prerequisite for commercialization is making the lifetime of devices adequate in relation to the energy that is embedded in the fabrication of the devices, so that the solar cells won’t degrade before they have produced more energy than was used for making them,” adds Jaana Vapaavuori, the new assistant professor of the chemistry department of Université de Montréal.

New discoveries using biomaterials, or a hybrid material with wood pulp as substrates for the cells, could pave the way forward, said Miettunen, who is working with UdeM’s department of chemistry in her research. These materials’ natural ability to filter out impurities would work well for solar cells.

Interested in solar? Get a solar cost estimate and find out how much a solar system would cost for your home or business.
Follow us: @pvbuzzmedia on Twitter | pvbuzz media on Facebook
  • Written/Contributed by
  • University of Montreal — story source

More Stories From Around the Web:

Leave a Reply

Your email address will not be published. Required fields are marked *

What to Read Next:

4 tips for installing solar photovoltaic panels on a new construction

Incorporating solar energy into your house plans will help boost the output of the array and therefore increase your return...

Transitioning fossil fuel workers to the solar power workforce

As the world transitions towards a clean energy future, there will be a great need to address the challenges of...

Tripling the Energy Storage of Lithium-Ion Batteries

As the demand for smartphones, electric vehicles, and renewable energy continues to rise, scientists are searching for ways to improve...

Silicon-perovskite solar cells achieve record efficiency of 25,2%

In the field of photovoltaic technologies, silicon-based solar cells make up 90% of the market. In terms of cost, stability...

Hold that thought. Energy storage is growing on Ontario’s electric grid

A recent tour of Canada’s biggest battery allowed participants to get up close to an 8.8MW/40MWh lithium-ion array housed in...